OPEN ACCESS

RESEARCH ARTICLE

Intuitionistic Fuzzy Generalized Beta Closed Mappings

D. Jayanthi

Department of Mathematics, Avinashilingam University, Coimbatore, Tamilnadu, India.

ABSTRACT

In this paper we introduce intuitionistic fuzzy generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings. We investigate some of their properties. We also introduce intuitionistic fuzzy M-generalized beta closed mappings as well as intuitionistic fuzzy M-generalized beta open mappings. We provide the relation between intuitionistic fuzzy M-generalized beta closed mappings and intuitionistic fuzzy generalized beta closed mappings.

Key words and phrases: Intuitionistic fuzzy topology, intuitionistic fuzzy generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings.

I. Introduction

Zadeh [10] introduced the notion of fuzzy sets. Atanassov [1] introduced the notion of intuitionistic fuzzy sets. Using the notion of intuitionistic fuzzy sets, Coker [3] introduced the notion of intuitionistic fuzzy topological space. In this paper we introduce the notion of intuitionistic fuzzy generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings and study some of their properties. We also introduce intuitionistic fuzzy M-generalized beta closed mappings as well as intuitionistic fuzzy Mgeneralized beta open mappings. We provide the relation between intuitionistic fuzzy M-generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings. We provide the

II. Preliminaries

Definition 2.1: [1] An intuitionistic fuzzy set (IFS in short) A in X is an object having the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$

where the functions $\mu_A : X \to [0,1]$ and $\nu_A : X \to [0,1]$ denote the degree of membership (namely $\mu_A(x)$) and the degree of non -membership (namely $\nu_A(x)$) of each element $x \in X$ to the set A, respectively, and $0 \le \mu_A(x) + \nu_A(x) \le 1$ for each $x \in X$. Denote by IFS (X), the set of all intuitionistic fuzzy sets in X.

Definition 2.2: [1] Let A and B be IFSs of the form $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle / x \in X\}$ and $B = \{\langle x, \mu_B(x), \nu_B(x) \rangle / x \in X\}$. Then

- (a) $A \subseteq B$ if and only if $\mu_A(x) \le \mu_B(x)$ and $\nu_A(x) \ge \nu_B(x)$ for all $x \in X$
- (b) A = B if and only if $A \subseteq B$ and $B \subseteq A$
- (c) $A^c = \{ \langle x, v_A(x), \mu_A(x) \rangle / x \in X \}$
- $\begin{array}{ll} \text{(d)} & A \cap B = \{ \langle x, \, \mu_A \, (x) \wedge \mu_B \, (x), \, \nu_A(x) \lor \nu_B(x) \rangle \, / \, x \in \\ & X \} \end{array}$

$$\begin{array}{ll} (e) & A \cup B = \left\{ \left\langle x, \, \mu_A \left(x \right) \lor \mu_B \left(x \right), \, \nu_A(x) \land \nu_B(x) \right\rangle / \, x \in \\ & X \right\} \end{array}$$

The intuitionistic fuzzy sets $0_{\sim} = \{ \langle x, 0, 1 \rangle / x \in X \}$ and $1_{\sim} = \{ \langle x, 1, 0 \rangle / x \in X \}$ are respectively the empty set and the whole set of X.

We shall use the notation $A = \langle x, \mu_A, \nu_A \rangle$ instead of $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}.$

Definition 2.3: [3] An intuitionistic fuzzy topology (IFT for short) on X is a family τ of IFSs in X satisfying the following axioms.

- $(i) \quad 0_{\scriptscriptstyle \sim}, \, 1_{\scriptscriptstyle \sim} \in \tau$
- (ii) $G_1 \cap G_2 \in \tau$ for any $G_1, G_2 \in \tau$
- (iii) $\cup G_i \in \tau$ for any family $\{G_i / i \in J\} \subseteq \tau$.

In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short) and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The complement A^c of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS in short) in X.

Definition 2.4:[3] Let (X, τ) be an IFTS and $A = \langle x, \mu_A, \nu_A \rangle$ be an IFS in X. Then the intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by

- int (A) = \cup {G / G is an IFOS in X and G \subseteq A}
- cl (A) = \cap {K / K is an IFCS in X and A \subseteq K}
- Note that for any IFS A in (X, τ) , we have $cl(A^c) = (int(A))^c$ and $int(A^c) = (cl(A))^c$ [3].

Definition 2.5:[3] An IFS $A = \langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be an

- (i) *intuitionistic fuzzy semi closed set* (IFSCS in short) if int(cl(A)) ⊂ A
- (ii) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) ⊆ A
- (iii) *intuitionistic fuzzy* α *closed set* (IFαCS in short) if cl(int(cl(A)) ⊆ A.

The respective complements of the above IFCSs are called their respective IFOSs.

Definition 2.6:[3] An IFS A = $\langle x, \mu_A, \nu_A \rangle$ in an IFTS (X, τ) is said to be

- (i) intuitionistic fuzzy beta closed set (IF β CS for short) if int(cl(int(A))) \subseteq A.
- (ii) intuitionistic fuzzy beta open set (IF β OS for short) if A \subseteq cl(int(cl(A))).

The family of all IF β CSs (respectively IF β OSs) of an IFTS (X, τ) is denoted by IF β C(X) (respectively IF β O(X)).

Definition 2.7:[3] Let A be an IFS in an IFTS (X, τ) . Then the beta interior and the beta closure of A are defined as β int (A) = $\cup \{ G / G \text{ is an IF}\beta OS \text{ in } X \text{ and } G \subseteq A \} \beta cl (A) = <math>\cap \{ K / K \text{ is an IF}\beta CS \text{ in } X \text{ and } A \subseteq K \}$

Note that for any IFS A in (X, τ) , we have $\beta cl(A^c) = (\beta int(A))^c$ and $\beta int(A^c) = (\beta cl(A))^c$ [3]

Definition 2.8:[6] An IFS A in an IFTS (X,τ) is said to be an intuitionistic fuzzy generalized beta closed set (IFG β CS for short) if β cl(A) \subseteq U whenever A \subseteq U and U is an IFOS in (X, τ).

Every IFCS, IFSCS, IFPCS, IFRCS, IF α CS, IFSPCS and IF β CS is an IFG β CS but the separate converses may not be true in general.[6]

The family of all IFG β CSs of an IFTS (X, τ) is denoted by IFG β C(X).

Definition 2.9:[6] The complement A^c of an IFG β CS A in an IFTS (X, τ) is called an intuitionistic fuzzy generalized beta open set (IFG β OS for short) in X.

Every IFOS, IFSOS, IFPOS, IFROS, IF α OS, IFSPOS and IF β OS is an IFG β OS but the separate converses may not be true in general.[6]

The family of all IFG β OSs of an IFTS (X, τ) is denoted by IFG β O(X).

Definition 2.10:[6] If every IFG β CS in (X, τ) is an IF β CS in (X, τ), then the space can be called as an intuitionistic fuzzy beta T_{1/2} space (IF β T_{1/2} space for short).

Definition 2.11:[4] A map f: $X \rightarrow Y$ is called an intuitionistic fuzzy closed mapping (IFCM for short) if f(A) is an IFCS in Y for each IFCS A in X.

Definition 2.12: [4] A mapping $f : X \rightarrow Y$ is said to be an intuitionistic fuzzy open mapping (IFOM for short) if f(A) is an IFOS in Y for each IFOS A in X.

Definition 2.13:[4] A map f: $X \rightarrow Y$ is called an

(i) intuitionistic fuzzy semi open mapping (IFSOM for short) if f(A) is an IFSOS in Y for each IFOS

A in X.

- (ii) intuitionistic fuzzy α open mapping (IF α OM for short) if f(A) is an IF α OS in Y for each IFOS A in X.
- (iii) intuitionistic fuzzy preopen mapping (IFPOM for short) if f(A) is an IFPOS in Y for each IFOS A in X.

Definition 2.14: [7] The IFS $c(\alpha, \beta) = \langle x, c_{\alpha}, c_{1-\beta} \rangle$ where $\alpha \in (0, 1]$, $\beta \in [0, 1)$ and $\alpha + \beta \le 1$ is called an intuitionistic fuzzy point (IFP for short) in X.

Note that an IFP $c(\alpha, \beta)$ is said to belong to an IFS A = $\langle x, \mu_{A}, \nu_{A} \rangle$ of X denoted by $c(\alpha, \beta) \in A$ if $\alpha \leq \mu_{A}$ and $\beta \geq \nu_{A}$.

Definition 2.15:[8] Let $c(\alpha, \beta)$ be an IFP of an IFTS (X, τ) . An IFS A of X is called an intuitionistic fuzzy neighborhood (IFN for short) of $c(\alpha, \beta)$ if there exists an IFOS B in X such that $c(\alpha, \beta) \in B \subseteq A$.

Definition 2.16:[6] Let $c(\alpha, \beta)$ be an IFP in (X, τ) . An IFS A of X is called an intuitionistic fuzzy beta neighborhood (IF β N for short) of $c(\alpha, \beta)$ if there is an IF β OS B in X such that $c(\alpha, \beta) \in B \subseteq A$.

Theorem 2.17: Let (X, τ) be an IFTS where X is an IF β T_{1/2} space. An IFS A is an IFG β OS in X if and only if A is an IF β N of c(α , β) for each IFP c(α , β) \in A.

Proof: Necessity: Let $c(\alpha, \beta) \in A$. Let A be an IFG β OS in X. Since X is an IF β T_{1/2} space, A is an IF β OS in X. Then clearly A is an IF β N of $c(\alpha, \beta)$.

Sufficiency: Let $c(\alpha, \beta) \in A$. Since A is an IF β N of $c(\alpha, \beta)$, there is an IF β OS B in X such that $c(\alpha, \beta) \in B \subseteq A$. Now $A = \bigcup \{ c(\alpha, \beta) / c(\alpha, \beta) \in A \} \subseteq \bigcup \{ B_{c(\alpha, \beta)} / c(\alpha, \beta) \in A \} \subseteq A$. This implies $A = \bigcup \{ B_{c(\alpha, \beta)} / c(\alpha, \beta) \in A \}$. Since each B is an IF β OS, A is an IF β OS and hence an IFG β OS in X.

Theorem 2.18: For any IFS A in an IFTS (X, τ) where X is an IF β T_{1/2} space, A \in IFG β O(X) if and only if for every IFP c(α , β) \in A, there exists an IFG β OS B in X such that $c(\alpha, \beta) \in B \subseteq A$.

Proof: Necessity: If $A \in IFG\beta O(X)$, then we can take B = A so that $c(\alpha, \beta) \in B \subseteq A$ for every IFP $c(\alpha, \beta) \in A$.

Sufficiency: Let A be an IFS in X and assume that there exists $B \in IFG\betaO(X)$ such that $c(\alpha, \beta) \in B \subseteq A$. Since X is an $IF\beta T_{1/2}$ space, B is an $IF\betaOS$ of X. Then $A = \bigcup_{c(\alpha, \beta) \in A} \{ c(\alpha, \beta) \} \subseteq \bigcup_{c(\alpha, \beta) \in A} B \subseteq A$. Therefore $A = \bigcup_{c(\alpha, \beta) \in A} B$ is an $IF\betaOS$ [6] and hence A is an IFG β OS in X. Thus A \in IFG β O(X).

III. Intuitionistic fuzzy generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings

In this section we introduce intuitionistic fuzzy generalized beta closed mappings and intuitionistic fuzzy generalized beta open mappings. We study some of their properties.

Definition 3.1: A map f: $X \rightarrow Y$ is called an intuitionistic fuzzy generalized beta closed mapping (IFG β CM for short) if f(A) is an IFG β CS in Y for each IFCS A in X.

For the sake of simplicity, we shall use the notation A= $\langle x, (\mu_a, \mu_b), (v_a, v_b) \rangle$ instead of A = $\langle x, (a/\mu_a, b/\mu_b), (a/v_a, b/v_b) \rangle$ in the following examples.

Similarly we shall use the notation $B = \langle y, (\mu_u, \mu_v), (\nu_{u, v_v}) \rangle$ instead of $B = \langle y, (u/\mu_u, v/\mu_v), (u/\nu_u, v/\nu_v) \rangle$ in the following examples.

Example 3.2: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.3_u, 0.4_v), (0.7_u, 0.6_v) \rangle$. Then $\tau = \{0_{-}, G_{1,} 1_{-}\}$ and $\sigma = \{0_{-}, G_{2,} 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f (a) = u and f (b) = v. Then f is an IFG β CM.

Theorem 3.3: Every IFCM is an IFG β CM but not conversely.

Proof: Let $f: X \to Y$ be an IFCM. Let A be an IFCS in X. Then f(A) is an IFCS in Y. Since every IFCS is an IFG β CS, f(A) is an IFG β CS in Y. Hence f is an IFG β CM.

Example 3.4: In Example 3.2 f is an IFG β CM but not an IFCM, since $G_1^c = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$ is an IFCS in X, but $f(G_1^c) = \langle y, (0.5_u, 0.4_v), (0.5_u, 0.6_v) \rangle$ is not an IFCS in Y, since $cl(f(G_1^c)) = G_2^c \neq f(G_1^c)$

Theorem 3.5: Every IF α CM is an IFG β CM but not conversely.

Proof: Let f: $X \rightarrow Y$ be an IF α CM. Let A be an IFCS in X. Then f(A) is an IF α CS in Y. Since every IF α CS is an IFG β CS , f(A) is an IFG β CS in Y. Hence f is an IFG β CM.

Example 3.6: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.8_u, 0.7_v), (0.2_u, 0.3_v) \rangle$. Then $\tau = \{0_{-}, G_{1,} 1_{-}\}$ and $\sigma = \{0_{-}, G_{2,} 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v.

Then f is an IFG β CM but not an IF α CM. Since G_1^c is an IFCS in X but $f(G_1^c) = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is not an IF α CS in Y, since $cl(int(cl(f(G_1^c)))) = 1_{\sim} \not\subset f(G_1^c)$.

Theorem 3.7: Every IFSCM is an IFG β CM but not conversely.

Proof: Let f: $X \rightarrow Y$ be an IFSCM. Let A be an IFCS in X. Then f(A) is an IFSCS in Y. Since every IFSCS is an IFG β CS, f(A) is an IFG β CS in Y. Hence f is an IFG β CM.

Example 3.8: In Example 3.6, f is an IFG β CM but not an IFSCM, since Since G_1^c is an IFCS in X but $f(G_1^c) = \langle y, (0.5_u, 0.6_v), (0.5_u, 0.4_v) \rangle$ is not an IFSCS in Y, since $int(cl(f(G_1^c))) = 1_{\sim} \not\subset f(G_1^c)$.

Theorem 3.9: Every IFPCM is an IFG β CM but not conversely.

Proof: Let f: $X \rightarrow Y$ be an IFPCM. Let A be an IFCS in X. Then f(A) is an IFPCS in Y. Since every IFPCS is an IFG β CS, f(A) is an IFG β CS in Y. Hence f is an IFG β CM.

Example 3.10: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.2_u, 0.3_v), (0.8_u, 0.7_v) \}$. Then $\tau = \{0_{-}, G_{1,} 1_{-}\}$ and $\sigma = \{0_{-}, G_{2,} 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f(a) = u and f(b) = v. Then f is an IFG β CM but not an

IFPCM, since $f(G_1^c)$ is an IFCS in Y but not an IFPCS in Y, since $cl(int(f(G_1^c)))) \subseteq G_2^c \not\subset f(G_1^c)$.

Definition 3.11: A mapping $f : X \rightarrow Y$ is said to be an intuitionistic fuzzy M-generalized beta closed mapping (IFMG β CM, for short) if f(A) is an IFG β CS in Y for every IFG β CS A in X.

Example 3.12: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.6_b), (0.5_a, 0.4_b) \rangle$, $G_2 = \langle y, (0.3_u, 0.2_v), (0.7_u, 0.8_v) \rangle$. Then $\tau = \{0_{-}, G_{1,} 1_{-}\}$ and $\sigma = \{0_{-}, G_{2,} 1_{-}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow (Y, \sigma)$ by f (a) = u and f (b) = v. Then f is an IFMG β CM.

Theorem 3.13 : Every IFMG β CM is an IFG β CM but not conversely.

Proof: Let f: $X \rightarrow Y$ be an IFMG β CM. Let A be an IFCS in X. Then A is an IFG β CS in X. By hypothesis f (A) is an IFG β CS in Y. Therefore f is an IFG β CM.

Example 3.14: Let $X = \{a, b\}$, $Y = \{u, v\}$ and $G_1 = \langle x, (0.5_a, 0.4_b), (0.5_a, 0.6_b) \rangle$, $G_2 = \langle y, (0.6_u, 0.7_v), (0.4_u, 0.3_v) \rangle$ and $G_3 = \langle y, (0.7_u, 0.8_v), (0.3_u, 0.2_v) \rangle$. Then

www.ijera.com

 $\tau = \{0_{\sim}, G_{1}, 1_{\sim}\}$ and $\sigma = \{0_{\sim}, G_{2}, G_{3}, 1_{\sim}\}$ are IFTs on X and Y respectively. Define a mapping f: $(X, \tau) \rightarrow$ (Y, σ) by f (a) = u and f (b) = v. Then f is an IFG β CM but not an IFMG β CM. Since A = $\langle x, (0.6_{a}, 0.8_{b}), (0.4_{a}, 0.2_{b}) \rangle$ is IFG β CS in X but f(A) = $\langle y, (0.6_{u}, 0.8_{v}), (0.4_{u}, 0.2_{v}) \rangle$ is not an IFG β CS in Y, since f(A) \subset G₃ but spcl(f(A)) = 1_{\sim} \not\subset G₃.

The relation between various types of intuitionistic fuzzy closedness is given in the following diagram.

The reverse implications are not true in general in the above diagram.

Theorem 3.15: Let f: X \rightarrow Y be a mapping. Then the following are equivalent if Y is an IF β T_{1/2} space:

(i) f is an IFG β CM (ii) β cl(f(A)) \subseteq f(cl(A)) for each IFS A of X.

Proof: (i) \Rightarrow (ii) Let A be an IFS in X. Then cl(A) is an IFCS in X. (i) implies that f(cl(A)) is an IFG β CS in Y. Since Y is an IF β T_{1/2} space, f(cl(A)) is an IF β CS in Y. Therefore β cl(f(cl(A))) = f(cl(A)). Now β cl(f(A)) $\subseteq \beta$ cl(f(cl(A))) = f(cl(A)). Hence β cl(f(A)) \subseteq f(cl(A)) for each IFS A of X.

(ii) \Rightarrow (i) Let A be any IFCS in X. Then cl(A) = A. (ii) implies that β cl(f(A)) \subseteq f(cl(A)) = f(A). But f(A) $\subseteq \beta$ cl(f(A)). Therefore β cl(f(A)) = f(A). This implies f(A) is an IF β CS in Y. Since every IF β CS is an IFG β CS, f(A) is an IFG β CS in Y. Hence f is an IFG β CM.

Theorem 3.16: Let $f: X \to Y$ be a bijection. Then the following are equivalent if Y is an IF β T_{1/2} space: (i) f is an IFG β CM (ii) β cl(f(A)) \subseteq f(cl(A)) for each IFS A of X (iii) f⁻¹(β cl(B)) \subseteq cl(f⁻¹(B)) for every IFS B of Y.

Proof: (i) \Leftrightarrow (ii) is obvious from Theorem 3.15.

(ii) \Rightarrow (iii) Let B be an IFS in Y. Then f⁻¹(B) is an IFS in X. Since f is onto , $\beta cl(B) = \beta cl(f(f^{-1}(B)))$ and (ii) implies $\beta cl(f(f^{-1}(B))) \subseteq f(cl(f^{-1}(B)))$. Therefore $\beta cl(B) \subseteq f(cl(f^{-1}(B)))$. Now f⁻¹($\beta cl(B)) \subseteq f^{-1}(f(cl(f^{-1}(B)))$. Since f is one to one, f⁻¹ $^{1}(\beta cl(B)) \subseteq cl(f^{-1}(B)).$

(iii) \Rightarrow (ii) Let A be any IFS of X. Then f(A) is an IFS of Y. Since f is one to one, (iii) implies that f⁻¹(β cl(f(A)) \subseteq cl(f⁻¹f(A)) = cl(A). Therefore f(f⁻¹(β cl(f(A)))) \subseteq f(cl(A)). Since f is onto β cl(f(A)) = f(f⁻¹(β cl(f(A)))) \subseteq f(cl(A)).

Theorem 3.17: A mapping f: $X \rightarrow Y$ is an IFG β CM if and only if for every IFS B of Y and for every IFOS U containing f⁻¹(B), there is an IFG β OS A of Y such that B \subset A and f⁻¹(A) \subset U.

Proof: Necessity: Let B be any IFS in Y. Let U be an IFOS in X such that $f^{-1}(B) \subset U$, then U^c is an IFCS in X. By hypothesis $f(U^c)$ is an IFG β CS in Y. Let A = $(f(U^c))^c$, then A is an IFG β OS in Y and B \subset A. Now f $^{-1}(A) = f^{-1}(f(U^c))^c = (f^{-1}(f(U^c)))^c \subset U$.

Sufficiency: Let A be any IFCS in X, then A^c is an IFOS in X and $f^{-1}(f(A^c))^c \subset A^c$. By hypothesis there exists an IFG β OS B in Y such that $f(A^c) \subset B$ and $f^{-1}(B) \subset A^c$. therefore $A \subset (f^{-1}(B))^c$. Hence $B^c \subset f(A) \subset f(f^{-1}(B))^c \subset B^c$. This implies that $f(A) = B^c$. Since B^c is an IFG β CS in Y, f(A) is an IFG β CS in Y. Hence f is an IFG β CM.

Theorem 3.18: Let f: $X \rightarrow Y$ be a bijective map where Y is an IF β T_{1/2} space. Then the following are equivalent:

(i) f is an IFGβCM

(ii) f(B) is an IFG β OS in Y for every IFOS B in X.

(iii) $f(int(B)) \subseteq cl(int(cl(f(B))))$ for every IFS B in X. **Proof:** (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Let B be an IFS in X, then int(B) is an IFOS in X. By hypothesis f(int(B)) is an IFG β OS in Y. Since Y is an IF β T_{1/2} space, f(int(B)) is an IF β OS in Y. Therefore f(int(B)) = β int(f(int(B))) = f(int(B)) \cap cl(int(cl(f(int(B))))) \subseteq cl(int(cl(f(int(B))))) \subseteq cl(int(cl(f(B)))).

(iii) \Rightarrow (i) let A be an IFCS in X. Then A ^c is an IFOS in X. By hypothesis, $f(int(A^c)) = f(A^c) \subseteq cl(int(cl(f(A^c))))$. That is $int(cl(int(f(A)))) \subseteq f(A)$. This implies f(A) is an IF β CS in Y and hence an IFG β CS in Y. Therefore f is an IFG β CM.

Theorem 3.19: Let f: $X \rightarrow Y$ be a bijective map where Y is an IF β T_{1/2} space. Then the following are equivalent:

(i) f is an IFGβCM

(ii) f(B) is an IFG β CS in Y for every IFCS B in X.

(iii) $int(cl(int(f (B)))) \subseteq f(cl(B))$ for every IFS B in X. **Proof:** (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Let B be an IFS in X, then cl(B) is an IFCS in X. By hypothesis f(cl(B)) is an IFG β CS in Y. Since Y is an IF β T_{1/2} space, f(cl(B)) is an IF β CS in Y. Therefore f(cl(B)) = β cl(f(cl(B))) = f(cl(B)) \cup int(cl(int(f(cl(B))))) \supseteq int(cl(int(f(cl(B))))) \supseteq

(iii) \Rightarrow (i) let A be an IFCS in X. By hypothesis,

www.ijera.com

 $f(cl(A)) = f(A) \subseteq int(cl(int(f(A))))$. This implies f(A) is an IF β CS in Y and hence an IFG β CS in Y. Therefore f is an IFG β CM.

Definition 3.20: A mapping $f : X \to Y$ is said to be an intuitionistic fuzzy generalized beta open mapping (IFG β OM for short) if f(A) is an IFG β OS in Y for each IFOS in X.

Theorem 3.21: If $f: X \rightarrow Y$ is a mapping. Then the following are equivalent if Y is an IFG β T_{1/2} space: (i) f is an IFG β OM.

(ii) $f(int(A)) \subseteq \beta int(f(A))$ for each IFS A of X.

(iii) $\operatorname{int}(f^{-1}(B)) \subseteq f^{-1}(\beta \operatorname{int}(B))$ for every IFS B of Y.

Proof: (i) \Rightarrow (ii) Let f be an IFG β OM. Let A be any IFS in X. Then int(A) is an IFOS in X. (i) implies that f(int(A)) is an IFG β OS in Y. Since Y is an IF β T_{1/2} space, f(intA)) is an IF β OS in Y. Therefore β int(f(int(A))) = f(int(A)) \subseteq f(A). Now f(int(A)) = β int(f(int(A))) $\subseteq \beta$ int(f(A))

(ii) \Rightarrow (iii) Let B be any IFS in Y. Then f⁻¹(B) is an IFS in X. (ii) implies that f(int(f⁻¹(B))) \subseteq β int(f(f⁻¹(B))) = β int(B). Now int(f⁻¹(B)) \subseteq f⁻¹(f(int(f⁻¹(B)))) \subseteq f⁻¹(β int(B))

(iii) \Rightarrow (i) Let A be an IFOS in X. Then int(A) = A and f(A) is an IFS in Y. (iii) implies that int(f $^{-1}(f(A))) \subseteq f^{-1}(\beta int(f(A)))$. Now A = int(A) \subseteq int(f $^{1}(f(A))) \subseteq f^{-1}(\beta int(f(A)))$. Therefore f(A) \subseteq f(f $^{1}(\beta int(f(A)))) = \beta int(f(A)) \subseteq f(A)$. This implies $\beta int(f(A)) = f(A)$. Hence f(A) is an IF β OS in Y. Since every IF β OS is an IFG β OS, f(A) is an IFG β OS in Y. Thus f is an IFG β OM.

Theorem 3.22: A mapping $f: X \to Y$ is an IFG β OM if and only if $int(f^{-1}(B)) \subseteq f^{-1}(\beta int(B))$ for every $B \subseteq Y$, where Y is an IF β T_{1/2} space.

Proof: Necessity: Let $B \subseteq Y$. Then $f^{-1}(B) \subseteq X$ and int($f^{-1}(B)$) is an IFOS in X. By hypothesis, $f(int(f^{-1}(B)))$ is an IFG β OS in Y. Since Y is an IF β T_{1/2} space, $f(int(f^{-1}(B)))$ is an IF β OS in Y. Therefore $f(int(f^{-1}(B))) = \beta int(f(int(f^{-1}(B)))) \subseteq \beta int(B)$. This implies $int(f^{-1}(B)) \subseteq f^{-1}(\beta int(B))$.

Sufficiency: Let A be an IFOS in X. Therefore int(A) = A. Then $f(A) \subseteq Y$. By hypothesis int(f⁻¹(f(A))) \subseteq f⁻¹(β int(f(A))). That is int(A) \subseteq int(f⁻¹(f(A))) \subseteq f⁻¹(β int(f(A))). Therefore A \subseteq f⁻¹(β int(f(A))). This implies $f(A) \subseteq \beta$ int(f(A)) \subseteq f(A). Hence f(A) is an IF β OS in Y and hence an IFG β OS in Y. Thus f is an IFG β OM.

Theorem 3.23: Let f: X \rightarrow Y be an onto mapping where Y is an IF β T_{1/2} space. Then f is an IFG β OM if and only if for any IFP c(α , β) \in Y and for any IFN B of f⁻¹(c(α , β)), there is an IF β N A of c(α , β) such **Theorem 3.25:** If f: X \rightarrow Y be a bijective mapping that $c(\alpha, \beta) \in A$ and $f^{-1}(A) \subseteq B$.

Proof: Necessity: Let $c(\alpha, \beta) \in Y$ and let B be an IFN of f $^{-1}(c(\alpha, \beta))$. Then there is an IFOS C in X such that f⁻¹(c(α , β)) \in C \subseteq B. Since f is an IFGBCM, f(C) is an IFGBOS in Y. Since Y is an IF β T_{1/2} space, f(C) is an IF β OS in Y and c(α , β) \in f(f $^{-1}(c(\alpha, \beta))) \subset f(C) \subset f(B)$. Put A = f(C). Then A is an IF β N of c(α , β) and c(α , β) \in A \subset f(B). Thus c(α , β) \in A and f⁻¹(A) \subseteq f⁻¹(f(B)) = B. That is f⁻¹(A) \subseteq B. **Sufficiency:** Let $B \subseteq X$ be an IFOS. If $f(B) = 0_{\sim}$ then there is nothing to prove. Suppose that $c(\alpha, \beta) \in$ f(B). This implies f⁻¹(c(α , β)) \in B. Then B is an IFN of f⁻¹(c(α , β)). By hypothesis there is an IF β N A of $c(\alpha, \beta)$ such that $c(\alpha, \beta) \in A$ and $f^{-1}(A) \subseteq B$. Therefore there is an IF β OS C in Y such that c(α , β) $\in C \subset A = f(f^{-1}(A)) \subset f(B)$. Hence $f(B) = \bigcup \{ c(\alpha, \beta) \}$ $\ / \ c(\alpha, \ \beta) \ \in \ f(B) \ \subseteq \ \cup \ \{C_{c(\alpha, \ \beta)} \ / \ c(\alpha, \ \beta) \ \in \ f(B) \ \} \ \subseteq$ f(B). Thus f(B) = $\cup \{ C_{c(\alpha, \beta)} / c(\alpha, \beta) \in f(B) \}$. Since each C is an IFBOS, f (B) is also an IFBOS and hence is an IFGBOS in Y. Therefore f is an IFGBOM.

Theorem 3.24: Let $f: X \to Y$ be a bijective mapping, where X is an IF β T_{1/2} space. Then the following are equivalent:

(i) f is an IFMG β CM

(ii) for each IFP $c(\alpha, \beta) \in Y$ and every IF β N A of f⁻¹($c(\alpha, \beta)$), there exists an IFG β OS B in Y such that $c(\alpha, \beta) \in B \subseteq f(A)$.

(iii) for each IFP $c(\alpha, \beta) \in Y$ and every IFSN A of $f^{-1}(c(\alpha, \beta))$, there exists an IFG β OS B in Y such that

 $c(\alpha, \beta) \in B$ and $f^{-1}(B) \subseteq A$.

Proof: (i) \Rightarrow (ii) Let $c(\alpha, \beta) \in Y$ and A the IFSN of f ⁻¹($c(\alpha, \beta)$). Then there exists an IF β OS C in X such that f⁻¹($c(\alpha, \beta)$) $\in C \subseteq A$. Since every IF β OS is an IFG β OS, C is an IFG β OS in X. Then by hypothesis, f(C) is an IFG β OS in Y. Now $c(\alpha, \beta) \in f(C) \subseteq f(A)$. Put B = f(C). This implies $c(\alpha, \beta) \in B \subseteq f(A)$.

(ii) \Rightarrow (iii) Let $c(\alpha, \beta) \in Y$ and A the IFSN of f⁻¹($c(\alpha, \beta)$). Then there exists an IF β OS C in X such that f⁻¹($c(\alpha, \beta)$) $\in C \subseteq A$. Since every IF β OS is an IFG β OS, C is an IFG β OS in X. Then by hypothesis, f(C) is an IFG β OS in Y.

Now $c(\alpha, \beta) \in f(C) \subseteq f(A)$. Put B = f(C). This implies $c(\alpha, \beta) \in B \subseteq f(A)$. Now $f^{-1}(B) \subseteq f^{-1}(f(A)) \subseteq A$. That is $f^{-1}(B) \subseteq A$.

(iii) \Rightarrow (i) Let A be an IFG β OS in X. Since X is an IF β T_{1/2} space, A is an IF β OS in X. Let $c(\alpha, \beta) \in Y$ and $f^{-1}(c(\alpha, \beta)) \in A$. That is $c(\alpha, \beta) \in f(A)$. This implies A is an IF β N of $f^{-1}(c(\alpha, \beta))$. Then by hypothesis, there exists an IFG β OS B in Y such that $c(\alpha, \beta) \in B$ and $f^{-1}(B) \subseteq A$. Hence by Theorem 2.18, f(A) is an IFG β OS in Y. Therefore f is an IFMG β CM.

then the following are equivalent:

- (i) f is an IFMG β CM
- (ii) f(A) is an IFG β OS in Y for every IFG β OS A in X
- (iii) for every IFP $c(\alpha, \beta) \in Y$ and for every IFG β OS B in X such that $f^{-1}(c(\alpha, \beta)) \in B$, there exists an IFG β OS A in Y such that $c(\alpha, \beta) \in A$ and $f^{-1}(A) \subseteq B$.

Proof: (i) \Rightarrow (ii) is obvious, since f is bijective.

(ii) \Rightarrow (iii) Let $c(\alpha, \beta) \in Y$ and let B be an IFG β OS in X such that $f^{-1}(c(\alpha, \beta)) \in B$. This implies $c(\alpha, \beta) \in f(B)$. By hypothesis, f(B) is an IFG β OS in Y. Let A = f (B). Therefore $c(\alpha, \beta) \in f(B) = A$ and $f^{-1}(A) = f^{-1}(f(B)) \subseteq B$.

(iii) \Rightarrow (i) Let B be an IFG β CS in X. Then B ^c is an IFG β OS in X. Let $c(\alpha, \beta) \in Y$ and f

⁻¹(c(α , β)) \in B ^c. This implies c(α , β) \in f(B ^c). By hypothesis there exists an IFG β OS A in Y such that c(α , β) \in A and f ⁻¹(A) \subseteq B ^c. Put A = f(B ^c). Then c(α , β) \in f(B ^c) and A = f(f ⁻¹(B ^c)) \subseteq f(B ^c). Hence by Theorem 2.18, f(B ^c) is an IFG β OS in Y. Therefore f(B) is an IFG β CS in Y. Thus f is an IFMG β CM.

Theorem 3.26: If $f: X \rightarrow Y$ be a bijective mapping then the following are equivalent:

- (i) f is an IFMG β CM
- (ii) f(A) is an IFG β OS in Y for every IFG β OS A in X

(iii) $f(\beta int(B)) \subseteq \beta int(f(B))$ for every IFS B in X

(iv) $\beta cl(f(B)) \subseteq f(\beta cl(B))$ for every IFS B in X.

Proof: (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Let B be any IFS in X. Since β int(B) is an IF β OS, it is an IFG β OS in X. Then by hypothesis, f(β int(B)) is an IFG β OS in Y. Since Y is an IF β T_{1/2} space, f(β int(B)) is an IF β OS in Y. Therefore f(β int(B)) = β int(f(β int(B))) $\subseteq \beta$ int(f(B)).

(iii) \Rightarrow (iv) can easily proved by taking complement in (iii).

(iv) \Rightarrow (i) Let A be an IFG β CS in X. By hypothesis, β cl(f(A)) \subseteq f(β cl(A)). Since X is an IF β T_{1/2} space, A is an IF β CS in X. Therefore β cl(f(A)) \subseteq f(β cl(A)) = f(A) $\subseteq \beta$ cl(f(A)). Hence f(A) is an IF β CS in Y and hence an IFG β CS

in Y. Thus f is an IFMG β CM.

REFERENCES

- [1] Atanassov, K., **Intuitionistic fuzzy sets**, Fuzzy Sets and Systems, 1986, 87-96.
- [2] Chang, C., Fuzzy topological spaces, J. Math. Anal. Appl., 1968, 182-190.
- [3] Coker, D., An introduction to intuitionistic fuzzy topological spaces, Fuzzy sets and systems, 1997, 81-89.
- [4] Joung Kon Jeon, Young Bae Jun, and Jin

Han Park, **Intuitionistic fuzzy alphacontinuity and intuitionistic fuzzy pre continuity**, International Journal of Mathematics and Mathematical Sciences, 2005, 3091-3101.

- [5] Saraf, R. K., Govindappa Navalagi and Meena Khanna, on fuzzy beta generalized closed sets, Bull. Malays. Sci. Soc., 2005, 19-30.
- [6] Jayanthi, D., Intuitionistic fuzzy generalized beta closed sets (accepted)
- [7] Santhi, R. & Jayanthi, D., Intuitionistic fuzzy generalized semipreclosed sets, Tri. Math. Soc., 2009, 61-72.
- [8] Seok Jong Lee and Eun Pyo Lee, The category of intuitionistic fuzzy topological spaces, Bull. Korean Math. Soc. 2000, 63-76.
- [9] Thakur, S. S. and Singh, S., on fuzzy beta open sets and fuzzy beta continuity, Fuzzy sets and systems, 1998, 383-391.
- [10] Zadeh, L. A., **Fuzzy sets**, Information and control, 1965, 338-353.